J. S. Department of Commerce Malcolm Baldrige Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate Standard Reference Material 720

Synthetic Sapphire (α -Al₂O₃)

This Standard Reference Material (SRM) is intended for use in calibrating or checking calorimeters used to measure either enthalpy or heat capacity within the range of 10 to 2250 K.

The material furnished is synthetic sapphire cylinders, cut from centerless-ground rods grown by the Vernieul process and obtained from the Union Carbide Corporation.

The enthalpy and heat-capacity data have been derived from high-temperature enthalpy and low-temperature heat-capacity measurements. These data are presented in both tabular and equation format.

The enthalpy values are accurate to \pm 0.1 percent from 70 to 1173 K and the heat-capacity values have an accuracy ranging from \pm 0.1 percent at 70 K to \pm 0.3 percent at 1200 K. Below 70 K, the inaccuracy in heat-capacity and enthalpy values increase gradually to \pm 10 percent at 10 K, because, with decreasing temperature, the heat capacity of sapphire diminishes at a much faster rate than does that of the sample container (mainly copper). The precision of the heat-capacity measurement between 100 and 380 K is estimated to be \pm 0.02 percent. The precision of the enthalpy measurement from 273.15 to 1173 K is estimated to be 0.02 percent. For the temperature range 1173 to 2250 K, the precision of the enthalpy measurement is estimated to be \pm 0.03 percent, and the accuracy of the measured enthalpy is estimated to be \pm 0.2 percent, to a large extent reflecting the uncertainty in temperature measurements at these high temperatures. Above 1700 K, a detectable weight loss was observed in an open container due to evaporation of material.

Relative Enthalpy and Heat Capacity b

Temp ^a	H _T -H _{0 K}	C _p J⋅mol ⁻¹ ⋅K ⁻¹	Temp K	H _T -H ₀ K J·mol ⁻¹	C _p J·mol ⁻¹ ·K ⁻¹
15	0.115	0.0307	80	131.7	6.90_{1}
20	0.364	0.0732	90	214.2	9.679
25	0.89_{8}	0.146	100	326.6	12.855
30	1.905	0.265	110	472.4	16.347
35	3.646	0.443	120	654.3	20.07
40	6.460	0.697	130	874.3	23.95
45	10.77	1.046	140	1133.7	27.93
50	17.11	1.507	150	1433.1	31.95
60	38.18	2.793	160	1772.7	35.95

^aTemperatures expressed on IPTS-68 scale

(Table continued on page 2)

Heat-capacity measurements from 10 to 380 K were made by S.S. Chang in the Polymers Division of the Center for Materials Science. Enthalpy measurements from 273.15 to 1173.15 K were made by D.A. Ditmars and T.B. Douglas; those from 1173.15 K to 2250 K were made by S. Ishihara and E.D. West. The enthalpy measurements were made with facilities located in the Chemical Thermodynamics Division of the Center for Chemical Physics.

The technical and support aspects in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by J.L. Hague and R.K. Kirby.

Washington, D.C. 20234 April 13, 1982 (Revision of Certificate dated 8-26-70) George A. Uriano, Chief
Office of Standard Reference Materials

^bMolecular Weight = 101.9613

Relative Enthalpy and Heat Capacity

Temp	H _T -H _{0 K}	C_p	Temp	H_T – H_0 K	Cp
K	$\mathbf{J} \cdot \mathbf{mol}^{-1}$	$\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	K	J·mol ⁻¹	J·mol ⁻¹ ·K
170	2152.0	39.90	600	40121	112.55
180	2570.3	43.75	610	41249	113.06
190	3026.7	47.50	620	42382	113.55
200	3519.9	51.12	630	4352 0	114.02
210	4048.7	54.61	640	44663	114.48
220	4611.6	57.9 ₅	650	45810	114.92
230	5207.1	61.14	660	46961	115.35
240	5833.9	64.18	670	48117	115.76
250	6490.3	67.08	680	49276	116.16
260	7175.0	69.82	690	50440	116.55
270	7886.3	72.12	700	51607	116.92
273.15	8115.6	73.21	720	53953	117.64
280	8622.8	74.87	740	56313	118.32
290	9383.2	77.20	760	5868 ₅	118.96
298.15	10020	79.01	780 780	61071	119.56
300	10166	79.41	800	63468	120.14
310	10971	81.51	820	65876	120.69
320	11796	83.49	840	6829 ₅	120.09
330	12641	85.3 ₇	860		
340	13503	87.1 ₆	880	7072 ₄ 7316 ₃	121.7 ₁ 122.2 ₀
350		88.84			
	14383		900	7561 ₂	122.66
360	15280	90.45	920	7807 ₀	123.11
370	16192	91.97	940	80536	123.55
380	17119	93.41	960	83011	123.97
390	18060	94.78	980	8549 ₅	124.37
400	19014	96.0_{8}	1000	87 9 86	,124.77
410	19982	97.32	1020	90486	125.16
420	2096_{1}	98.5_{0}	1040	9299 ₂	125.53
430	21951	99.62	1060	9550 ₇	125.90
440	22953	100.69	1080	<u>9</u> 802 ₈	126.26
450	23965	101.71	1100	100560	126.61
460	24987	102.68	1120	103090	126.95
470	26018	103.60	1140	105640	127.29
480	27059	104.48	1160	108180	127.61
490	28108	105.33	1180	110740	127.94
500	29165	106.13	1200	113300	128.25
510	30230	106.90	1250	119730	129.01
520	31303	107.64	1300	126200	129.74
530	32383	108.35	1350	132710	130.43
540	33470	109.02	1400	139240	131.08
550	34563	109.67	1450	145810	131.70
560	35663	110.29	1500	1524 ₁₀	132.29
570	36769	110.29	1550	159040	132.84
580	37881	111.46	1600	1657 ₀₀	133.36
590	38998	112.02	1650	172380	133.85

Temp K	H _T -H _{0-K}	C _p J·mol ⁻¹ ·K ⁻¹	Temp K	H _T -H _{0 K}	C_p $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$
1750	185810	134.73	2050	226550	136.80
1800	192550	135.13	2100	233400	137.10
1850	199320	135.50	2150	240260	137.41
1900	206100	135.85	2200	247140	137.73
1950	212900	136.18	2250	254030	138.06

Below 273.15 K, the heat-capacity values were calculated from a spline function fitted to the heat-capacity data over three temperature intervals and employing polynomials, P(n) = 1,2,3 of the form,

$$P_{n} = \sum_{i=0}^{6} \frac{A_{i}}{i!} (T - T_{0})^{i}$$

$$45.0 \text{ K} > T \ge 8.61 \text{ K}: \qquad T_{0} = 8.61 \text{ K} \qquad A_{3} = +0.450764E - 02$$

$$A_{0} = -0.5147E + 01 \qquad A_{4} = -0.51464E - 03$$

$$A_{1} = +0.34127E + 00 \qquad A_{5} = +0.397864E - 04$$

$$A_{2} = -0.333446E - 01 \qquad A_{6} = -0.152136E - 05$$

$$125.0 \text{ K} > T \ge 45.0 \text{ K}: \qquad T_{0} = 40.0 \text{ K} \qquad A_{3} = +0.95173E - 04$$

$$A_{0} = +0.6966E + 00 \qquad A_{4} = -0.35910E - 05$$

$$A_{1} = +0.59387E - 01 \qquad A_{5} = -0.6498E - 07$$

$$A_{2} = +0.40357E - 02 \qquad A_{6} = +0.4089E - 08$$

$$273.15 \text{ K} > T \ge 125.0 \text{ K}: \qquad T_{0} = 125.0 \text{ K} \qquad A_{3} = -0.83967E - 04$$

$$A_{0} = +0.21993E + 02 \qquad A_{4} = +0.19133E - 05$$

$$A_{1} = +0.38853E + 00 \qquad A_{5} = -0.31778E - 07$$

$$A_{2} = +0.13955E - 02 \qquad A_{6} = +0.29562E - 09$$

Above 273.15 K, enthalpy and heat-capacity values were derived from the following equation

$$H_T - H_{273.15} = AT^{-2} + BT^{-1} + ClnT + K + DT + ET^2 + FT^3 + GT^4 + HT^5 J \cdot mol^{-1}$$
 $A = +6.6253E + 07$
 $B = -4.54238E + 06$
 $C = -5.475599E + 04$
 $E = -8.57516E - 02$
 $E = -8.57516E -$

Low-temperature measurements from 10 to 380 K were made with a vacuum adiabatic calorimeter [1,2] operated automatically under the control of a minicomputer. Enthalpy measurements at eighteen temperatures from 273 to 1173 K were made by the drop method using a Bunsen ice calorimeter [3,4]. From 1173 to 2250 K, enthalpy measurements were made with an adiabatic receiving calorimeter [5,6]. All temperatures are expressed on the IPTS-68 scale. In the correction of specimen mass data for atmospheric buoyancy, a density of 3.97 g·cm⁻³ for α -Al₂O₃ was assumed. The functions presented were fitted by the method of least squares to these data. The tabulated values were calculated using these functions.

An occasional particle may contain an end smear due to the method employed in cutting the material. These smears do not contribute significantly to the enthalpy values given in this certificate. However, it is recommended that the material be heated to 1000 °C in air prior to heat-capacity measurements below 350 K. Microprobe analyses indicate small quantities of chloride, titanium, calcium, silicon, iron, copper, and zinc on the surfaces. Spectrographic examination indicates the purity of the bulk material to be at least 99.95 + percent, with the major impurities being magnesium, calcium, chromium, iron, silicon, and titanium. Examination by atomic absorption spectrometry for magnesium, indicated as the major impurity by the above tests, shows that the surface contamination by this element amounts to 1 ppm, or less, and that the bulk material contains 10 ppm, or less, of magnesium. In addition, the material absorbs a small amount (30 ppm or less, presumably moisture) of weight on the ground surfaces on exposure to room air, and may require heating in an inert atmosphere, if this amount of moisture is of concern. Combustion analysis in oxygen indicates the material contains on the order of 10 ppm or less of carbonaceous material calculated as carbon.