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Estimating the thermal conductivity of a film on a substrate of known thermal propertiesis
examined in thisresearch. Thelaser flash method, commonly used in the measurement of thermal
diffusivity, isapplied to a composite sample, which hasafilm deposited on asubstrate. Thelaser flash
isapplied tothe substrate and subsequent temper atur e measurementsarerecor ded from thefilm side
of thesample. Both thethermal conductivity and the volumetric heat capacity of the substrate must
be known. Additionally, the volumetric heat capacity of the film must be known. The parameter
estimation method used includes nonlinear regression of atransient conduction model in the solid
material, which includes allowancefor convective heat losses. Thethermal conductivity isestimated
simultaneoudly with the magnitude of the flash and the convection coefficient. Thedirect solution
moded is a two-layer exact solution which brings about very rapid computation, in contrast to
numerical solutions. Several experiments are analyzed, with samples having various values of
thermal conductivity, demonstrating the range over which the method can be used.
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Nomenclature

a = thickness of substrate

b = thicknessof film

c = total samplethickness

Cot = specific heat of the substrate

Co2 = gpecific heat of thefilm

A,B,C,D, = constantsinthe seriessolution

Bi, = Biot number for the substrate

Bi, = Biot number for thefilm

ki = thermal conductivity of the substrate
Ky = thermal conductivity of the film

h = convection coefficient

N = norm for the series solution

S = surface areavariable for aboundary surface
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spatial variable in direction of heat transfer
dummy spatial variable of integration
eigenfunctions for the substrate
eigenfunctionsfor the film

experimntally measured temperature at time stepi
substrate thermal diffusivity
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sensitivity coefficient
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generic eigenvalue
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|. Introduction

HERMAL diffusivity has been measured using the flash method for several decades. Flash diffusivity

measurement has become common over this period of time and several companies make flash diffusivity
instruments. Using this method, a small disc-shaped sample of material, usually 1-2 cm in diameter with a thickness of
1-2mm, is placed in the flash diffusivity instrument. The sampleisthen subjected to abrief but intense laser flash
with aduration of several milliseconds and an intensity of several kilowatts per square millimeter. Temperature
measurements are recorded on the non-heated side of the sample as afunction of time, usually with an optical
measurement system. The temperature recordings are then analyzed in order to determine the thermal diffusivity of
the material. Theflash diffusivity method has the advantages of requiring only a small sample and experiments can
be conducted in a short amount of time, with experiment durations on the order of seconds. Additionally, the non-
contact temperature measurement system allows samplesto be tested at very high temperatures.

The research described in this paper involves the analysis of flash heating experiments where a sample
consisting of two layersisto be analyzed. In the classical flash diffusivity experiments performed historically, only
thermal diffusivity was calculated from the experimental results. From this, of course, thermal conductivity can be
calculated if volumetric heat capacity isknown. In the present research, the parameter of interest is the thermal
conductivity of the film coating, which is bonded to the sample substrate. Since only thermal diffusivity can be
obtained through flash diffusivity experiments, the following parameters must be known in order to obtain the desired
results:

Substrate thermal conductivity
Substrate volumetric heat capacity
Substrate thickness

Film thickness

Film volumetric heat capacity
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Figurel. Sample configuration in experiment.

During the flash heating test, the substrate is subjected to a nearly instantaneous heat addition imparted
from alaser. The surface temperature on the opposite side of the material isthen recorded as afunction of time and
placed in acomputer datafile. Based on the analysis of this data, the following parameters are estimated, by software
developed as part of thisresearch, using anon-linear regression procedure:

Film thermal conductivity
Thermal convection coefficient
Magnitude of heat absorbed during the flash

The program provides graphical and tabular output of the results. Additionally, the user can make several
selections as to how the parameters are computed, including selections on convergence criteria and the number of
iterations allowed in attempting to obtain convergence.

[1. Direct Solution
In any parameter estimation procedure, adirect solution is required which models the physical process. In

the present research, an analytical solution is used as opposed a numerical solution, primarily due to the speed with
which an analytical solution can be computed. Two differential equations are considered, one for each of the
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material layers. Specifically, these equations are

T T T
lﬂ ;:rlcplh and kzﬂ ;:rchzﬂ
fix it i fit
The boundary conditions for this problem are
LA 1T,
k=Y =h(T, - T)+qd) and - k,—2
klﬂxxzo (Ty - T) +qd(t) kzﬂxx:c
and the interface conditionsat x = a are
T,=T, and klE = 2&
X X 1ea

Theinitial conditionsfor this problem are

Ta(x,0) = To(x,0) = Ty,

Using separation of variables to solve these equations results in two sets of eigenvalues, one for each material.

These eigenvalues are defined as
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wherea, =k, /r,c,; anda, =Kk, /r,C,,. Thetemperaturesolutions Ty and T takethe following forms

¥
T.=a Xu(@.)exp(-12t)
n=1

¥
T, =a Xyn(h,x)exp(-| it)

n=1

where
X.n (9,X) = A cos(g, X) +B sin(g, X)

and

X, (h,X) =G, cosh, x)+ D, sinf, x)

=h(T, - T,)

@
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(10

In order to provide a complete solution, the constants A, B,,, C,,, and D,, must be obtained, as well as the eigenvalues
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g,and h n - Asastarting point, we will satisfy the boundary condition

X
k1 ﬂ : |x=0 = hX1| x=0 (11)
ix

After substituting for X, and X, /X, and dropping the n index subscripts for convenience, this boundary
condition becomes

k g Agsin(g x)+Bgcos(gx)g_, =hgAcos(gx)+Bsin(gx)g (12

X =

or k,Bg = hA which reducesto

_kBg
h

A

13

Next, the compatibility conditions at x=a, must be satisfied. With the elimination of the constant A, the eigenfunction
X; can now be expressed as

kB . K o
X, =29 coggx) + Bsin(g) = Bg ;g cos(gx) + 9n(9><)§ (14)

and X, /9X is
ﬂ;i L= Bg g legS'n(QX) +COS(9><)E (15)

Substituting these expressions into the compatibility condition equation for temperature we have

ng;]g cos(gp) +sin (ga)E =Ccosha)+ Dsn(a) (16)
and for the heat flux condition we have
é kg . u_ :
k,Bg g o (ca) + cos(ga)l%I =k,[- Chsdn(ha)+Dh coshal] (17)
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Re-arranging these equations we have

Eéggcos(h a) + EQQSn (ha) = ~—cos(ga) +4n (ga)u
Bg Bg & t

e Y enid

gé—:—sn(ha)+8é—)—cos(ha): k_ﬁﬁé kh sin(ga) + cos(ga)

At this point, these two equations can be solved for the two constantsC/B and D/B. Theseratios are

g gk;]g cos(ca)cosfha) + sn(ga )coS(ha)E g?t %%sn(ga)s’n(ha)- Cos(ga)s'n(ha)g
and
%: g_g (ga)s'n(ha)+sin(ga)sn ha ; ?L k_h -n(ga)cos(ha)- Cos(ga)cos(ha)g

We now have expressions for the constants A/B, C/B and D/B so that we can express the solutions in the two
regionsas

T.(x,t)= a Be! f(—2 1g cosgx+ Sn gx)

=1

and

T, (xt)= aBe' = coshx+%snhx)

=1

(18

19

(20

(21)

(22)

where C/B and D/B are long expressions, defined by equations (13), (19) and (20), but constants nevertheless. We

now have only one unknown constant, namely B, which we can eliminate if we apply theinitial condition.
s _k
[o] .
T.(0)= & B(~ cosgx+ Sngo) =Ty
w1 h
for the left side of the material and

s C C.
T,(x0)=a B(Ecoshx+ Esn hx)=T,

n=1

e

(24)

If we multiply both sides by the eigenfunction and integrate over the whole domain, adding both equations together,

we have
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v 3 o kg : kg :

Q A B(?cosgx+ an gx)(Tmcosgmx+ an g, x) dx

B(Ecoshx+ Bs'n hx)(gcoshmx+ 2sjn h,,,x) dx (25
B B B B

o kg, : K C D .
=Q T, ( lh cosg,, X +d9n gmx)dx+Q T¥(§C°Sth+§9nth)dX

The principle of orthogonality can now be applied which causes each term on the left-hand side to be zero, whenever

the subscript mdoes not equal n.

k c

@b B(—lcosg><+s'ng><)2dx+o B(Ecoshx+ 2s'nhx) 2dx
h B B -

_$ K, . < C D .

=Q T¥(Fcosgx+sngx)dx+Q T¥(ECOShX+ Esmhx)dx

The left-hand side of this equation istypically defined as the norm, which we represent with the symbol N. Sincethe

constant B is defined arbitrarily, we can write

BN = 3 B( K cosgx+ Sngx) 2dx + 3y  B( ¢ coshx + D snhx) “dx @7
Q@ = 0 = B
Alternatively, we can lump the arbitrary constant B into the norm by setting its value equal to 1 and we have
ok : 2 N : 2
N =Q (—cosgx+ singx) dx+Q (Ccosh x+ Dsinh x) “dx (29
With the norm defined this way, the solution can be cast in the form of a Green’sfunction. In general, for all
boundary conditions, the Green’sfunctionis
$ 1iCyXin ()X ,(X) .
G, (xtIxt)=8 =2 "“N " expg | 2(t- t)f (29)
n=0 n

wherei=1, 2 andj=1, 2 corresponding to the regionsin the body. In this formulation, the eigenfunction
X, (X) corresponds to the region in which the temperature is to be computed and the eigenfunction

i
X, (X") corresponds to the region in which the boundary condition, initial condition or internal energy generation

takes place.
The general Greervs function solution equation, as given in Beck, et al.*, for regioni is
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T(xt) = éZQ G, (x,t] x',0)T,(x',0)dV,¢

I}
[y

g \t Y 1 ' .
+Ja:l o Q, o, G (xt|x\t)g;(x,t)dve dt 30
g A 4 é T(xt) G, (%t xt)u
' - T(X'.t)— ds, dt
?}1 Qo Q 7 c & 0 HS

Inthisformulation, Sisthe surface area at each of the boundaries. This equation is made up of three salient terms.
Each term isasummation from 1 to 2, since this corresponds to the number of regionsin the body. A solution can be
found using this method for solving multiple layers®. Of the three main termsin this equation, the first term accounts
for theinitial conditions, the second term deals with internal heat generation and the last term handles non-
homogeneous boundary conditions. Inthe present case, theinitial conditions throughout both regions are ambient
temperature, allowing us to neglect the first term. Sincethereisno internal energy generation, the second term can
be neglected aswell. Finally, the only non-homogeneous boundary condition is the flash heating, which takes place
only attimet =0andx =0. Moreover, the flash heating in all flash diffusivity measurement formulationsis
considered to be uniform over the surface, eliminating the need to perform the surface integration. For these reasons,
the final integration is simply the Green’ s function evaluated at the x = 0 boundary, multiplied by the magnitude of
the heat flux at the surface.

Thelocation for temperature measurementsin the flash heating experiment is at the right hand surface, that
is, the film exterior surface. Therefore, we are interested only in the temperature solution for region 2. Of course, the
equations for both regions have to be solved simultaneously in order to obtain the solution for the second half of the
body. When evaluating the Green’ s function at the instant of the flash (t = 0), the X, portion of the solution remains
afunction of x and the X; solutionisafunction of X', which isthen evaluated at X =0. Thissimplifiesthe
temperature solution in the second region to

L=8) —fc ' fd
(X1 =0, s i OGE[ X)) t (31)

1%¥p1

T, (x',t)
Ix

where f  represents the cross sectional area perpendicular to the direction of the heat flux which comes from
integrating over the surface. Using x asthe spatial variable, we have

et O T(xt
T,(xt) =- 0., LGij(x,t | x',t )#f dt (32
1%pl
Also, the flash heating can be expressed as
T (x't
qd(t) =- klM (33
X
Substituting thisinto the integral we have
8
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f &=t ,
T,(x,t) = - QZOG”-(X,HX t)ad(t) dt (34

1Cp1

Substituting the Green’ s function, the solution becomes

foog=t& rcy X, (X)X, (x")
T, = —— g, 8 A e - Ohd () dt @
1%p1 n=0 n

Now the I ;C, terms cancel and the eigenfunctions can be evaluated at their respective values of x = cand x’ = 0.
When thisis done, the solution becomes
=t ¢ A(Ccoshc+ Dsnhc)

T(ct) =f aQ., nazo N

epl- 12(t-t)B) o @)

n

Finally, performing the integration, we have

§ A(Ccoshc+ Dsanhc)
e n

T(ct)=fga (37
n=1 Nn
Inevaluating thenorm N, we have the general definition
3
Nh=a Q r jcn[xj,n(xl)]zdvjq (38

j=1

In the specific case of the two-layer problem at hand, once again dropping the subscript index for convenience, this
becomes

N = (¥ ic(Acosgx+ singx)’dx+ (¥ ,c 2 (C cosh x+ Dsinh x)’dx (39)
0

a

Performing the integration, we have

€ am 1 _ 0. A aa 1 ou

N=r ,cnaA’c=+-—Sn2ga-+ —gn“ga+c—=--—sin2gax

YT &2 4g 5 9 &2 49 o
+rch2C285+mi(sin2hc-sin2ha)g (40)

CD a 1 . 0
+1 ,coo—(sinhc-sinha)+ D%e—-—(snzhc-sin2ha)=
2Lp2 h ( ) 82 4h( )g
Finally, the eigenvalues are computed by applying the boundary condition at x = ¢ of

9
American Institute of Aeronautics and Astronautics



X,

-k = hX 41
Tl *
Applying this boundary condition we have
é. h u _é h . u
Cé'sn(hc)- —cos(hc)g- Décos(hc)+—sn(hc)Q=0 (42
e kh u e kh u
Substituting the values for C and D above, this equation can be reduced to the eigencondition
hbtan(hb) - Bi, &k, 6gatan(ga)- Bi, w)

Bi, tan(hb) +hb ~ $hk, 4Bi, tan(ga) +

where Bi;, = ha/k, and Bi, = hb/k,. Sincetwo setsof eigenvalues are being computed simultaneously, the

process of finding the roots of the eigencondition must include consideration of both sets of eigenvalues. The roots
of the eigencondition will lie between asymptotes which occur at highly irregular intervals. Asymptotes of this

equation occur at Bi, tan(hb) +hb = 0 and at Bi, tan(ga) + ga = 0 which cause the eigen equation to reach
infinity. Therefore, thevaluesfor N and g which satisfy the two equations above serve as val ues between which

eigenvalues exist.

Finding these asymptotesis very important since some of them are very close together and others are quite
far apart. Unless the locations of the asymptotes are known, it would be nearly impossible to avoid missing some of
the eigenvalues. Once these asymptotes are located, the eigenvalues can be found by searching directly between
each pair of asymptotes using Newton’s method to find the roots of the eigencondition®.

1. Parameter Estimation

With the direct solution in place, the parameter estimation aspect of the problem can be undertaken. It is
desirable to solve for the minimum number of parameters necessary. Thisfacilitates the greatest degree of stability in
the parameter estimation procedure and the greatest degree of confidence in the cal culated parameters. The
unknown parameters for this model are thermal conductivity of the film, k,, heat transfer coefficient, h and the
incident heat flux absorbed, q,. I1n order to find the parameters, the method of least squaresis used as outlined in
Beck and Arnold®. The method of |east squares minimizes the following expression

S= é (Yi-Ti )2 (44)

i=1

whereY; represents the temperature measurements and T; represents the cal culated temperatures from the model
described in the direct solution development.

In order to minimize this expression, aside from using trial and error, the sensitivity coefficients must first be
calculated. Thisisaccomplished by taking partial derivatives of the direct temperature solution with respect to
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Figure2. Plot of thethree sensitivity coefficientsfor atest experiment (q,, k, h) from top to bottom. For this
example, the substrate thicknessis 0.8 mm with a conductivity of 1 W/m-K and thefilm thicknessis 0.2 mm with a
conductivity of 0.01 W/mk.

each of the parameters, one at atime. The sensitivity coefficients are then normalized by multiplying by the
respective parameter. Inthisway, the units of the sensitivity coefficients are alwaysin temperature and the
magnitudes of the coefficients are directly comparable. For example, the sensitivity coefficient for k,, the first
parameter of interest in the model discussed above, is

LS

b=k
LMk

(45)

Using these sensitivity coefficients, aset of matrix equations can be developed and solved using the
method of least squares. The parameter estimates must be found iteratively because the sensitivity coefficients for
this problem are nonlinear. There will be three such sensitivity coefficients for thisanalysis, one for each unknown
parameter. A graph of the sensitivity coefficients for this model, expressed as functions of time, is shown in Figure 2.
The parameters for the direct solution, from which the plotted sensitivity coefficients were taken, are from atest case
using the following parameters:
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Substrate thermal conductivity 1L.OW/m-K

Substrate volumetric heat capacity 10° Imf-K
Substrate thickness 08mm
Film thickness 02mm
Film volumetric heat capacity 10° Imf-K
Film thermal conductivity 0.01 W/m-K
Convection coefficient 20 W/nf-K
Magnitude of heat absorbed during the flash 1000 Jnf

The nature of the flash experimentsis such that the heat flux parameter and the Biot number are somewhat correlated,
an undesirable condition. Thisisevidenced by the similar shape of the two sensitivity coefficient curves.

1

0.8

=
(o]
1

=
g
1

=
%]
1

Sensitivity Coefficients (K)

Time (s)

Figure 3. Plot of thethree sensitivity coefficientsfor atest experiment (q,, k,, h) from top to bottom. For this
example, the substrate thicknessis 0.8 mm with a conductivity of 1 W/m-K and the film thicknessis 0.2 mm with a
conductivity of 0.05 W/mk.

The sensitivity coefficient curve for thermal conductivity, however, has aslightly different shape than the others,
which makes it amore salient parameter. When sensitivity curves are correlated, the individual parameters become
difficult to distinguish between one another and the parameter estimation algorithm is not asrobust. The thermal
conductivity sensitivity coefficient is distinguishable enough from the other curvesin the experiment depicted in
Figure 2, that convergenceis obtainable in this test case.

Figure 3 shows the same three sensitivity coefficients with the only difference beingalarger film
conductivity by afactor of five. Notice the shorter duration of the transients in this experiment in comparison to that
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in Figure 2. Thisisbecause the higher thermal conductivity allows the thermal conduction to take place more
quickly. Notice also that the peak value for the thermal conductivity sensitivity coefficient of 0.4 is approximately the
same asin Figure 2. Even with these sensitivity coefficients at the same magnitude, convergenceis easier to obtain
from the conditionsin Figure 3 because the correlation between the sensitivity coefficientsis much lessin the Figure
3 case. Thethermal conductivity curvein Figure 3 is noticeably different in shape from the other two.

It isdesirableto develop a systematized way of categorizing experimentsin order to determine optimum
experimental design, or at least an indication as to whether film thermal conductivity can be determined at al in
certain experiments. Pursuant to this goal, amatrix of synthetic experiments was generated, in order to determine the
maximum value of thefilm thermal conductivity sensitivity coefficient under various combinations of film thicknesses
and thermal conductivities. Figure 4 shows aplot summarizing the results of thesetests. In each of the tests, the
overall sample thicknesswas held at 1mm and only the film thickness and film thermal conductivity were allowed to
vary. All other parameters were held at the values noted previously. Ascan be seeninthisfigure, the

0.5

Film Thickness 0.3

‘ Film Thickness 0.2
’ Film Thickness 0.1

. Film Thickness 0.05
" Film Thickness 0.03
’ Film Thickness 0.01

=
o=
|

Max Sensitivity Coefficient (K)
[ oo [
— M2 (%]

0 . -

0.01 0.1 1 10
Film Conductivity (W/m-K)

Figure4. Plot of the peak value of thermal conductivity sensitivity coefficient asa function of film conductivity for
variousfilm thicknesses.

largest peak in the sensitivity coefficient for thermal conductivity comes at a higher value of film thermal conductivity
asthe thickness of thefilm increases. This seemsto bealogical trend, since the primary means of discrimination
between the film and the substrate is rooted in adelay of the thermal “wave” penetrating through the material during
the experiment. As can be seen on this plot, for cases where thereis athin film with ahigh thermal conductivity, the
peak sensitivity coefficient for film thermal conductivity isextremely low. Thisbodes poorly for obtaining
convergence in an experiment under these conditions. Conversely, with arelatively thick film having alow thermal
conductivity, the sensitivity coefficient for film thermal conductivity is much larger, which greatly increases the
probability of convergence in the parameter estimation program.

Thetrend toward a higher peak sensitivity coefficient for thick films of low conductivity hasalimit, ascan
be seenin Figure 4 aswell. When the film becomes extremely thick with alow thermal conductivity, the duration of
time required for the thermal “wave’ to transmit through the sampleisincreased. Asaresult, surface heat losses
have more time to act and the peak temperature reached on the film side of the sasmpleislower. Thiseffectively
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decreases the peak of the sensitivity coefficient plot for film thermal conductivity.

In order to obtain moreinsight into the optimal design of the experiment, the same data plotted on Figure 4
wasre-plotted in Figure 5 in adifferent format. The objective of the design of the experiment isto establish the
experimental parameters necessary in order to obtain the greatest sensitivity to the parameter of interest. In this case,
film and substrate thicknesses and thermal conductivities should be selected to obtain the largest possible peak in
the sensitivity coefficient curve for film thermal conductivity. Attention must also be given to ensuring the
sensitivity coefficient curves are somewhat uncorrelated. To help accomplish this, the concept of “diffusion
thicknessratio” was developed as part of thisresearch. This concept isbased on the principle of dimensionlesstime
in thermal conduction, which is normally expressed as

,_ at
=5 (46)
05
<
= 0.4 1
k5
o
5 03 Film Thickness 0.05
o -
O \
2 g2/  FilmThickness 0.03 Film Thickness 0.1
c Film Thickness 0.2
L]
* Film Thickness 0.01
x g4 e Film Thickness 0.3
=
D T T T T T T
000001 00001 0001 001 01 1 10 100

Diffusion Thickness Ratio (dimensionless)

Figureb5. Plotting the sameinformation asin Figure 4 with respect to “ diffusion thicknessratio” instead of film
conductivity. Thisplot isvery insensitiveto film thickness.

Using the fact that the majority of athermal transient in conduction is completed at adimensionlesstime of 1, if we
set t* to this value, wefind that the time required for thistransient to take placeis

t=— (47)
a

where L isthe generic thickness of apiece of material. Although thisterm carries units of time, itisreferred to here as
the “diffusion thickness” since this gives afeel for the effective penetration time required for the thermal “wave”.
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Moretime required for penetration equates to amore “thick” sample. If we then examine the ratio of the diffusion
thicknesses of the film and the substrate, we have arough idea of the amount of time it will take for diffusion to take
place in the film as compared with the substrate. Plotting the peak thermal conductivity sensitivity coefficient against
this diffusion thickness ratio, we find that there is a definite correlation between the two, regardless of film thickness
or film thermal conductivity. Figure 5 now provides a convenient tool to use in the design of experimentsinvolving
the determination of film thermal conductivity in flash diffusivity tests.

In order to make effective use of Figure 5, it would be useful to know the likelihood of convergence
associated with various values of the maximum sensitivity coefficient for the thermal conductivity of thefilm. In
order to determine this, synthetic experiments were generated using the program devel oped as part of thisresearch in
the “direct solution” mode. For this set of experiments, the same parameters were used as in the figures above with
the film thickness maintained at 0.1 mm. The film conductivity varied between 0.03 and 0.5 W/mK. Next, these
experiments were analyzed using the program in “ parameter estimation” mode. Additionally, errorswith a Gaussian
distribution were impressed on two sets of the synthetic experiments, to simulate experimental measurement errors.

10000

1000

100 1

—_
=
|

Eror Free Data

Maximum Percent Error on Initial Parameter Values

]
.

0 0.05 0.1 0.15 02 0.25 0.3 0.35
Peak Conductivity Sensitivity Coefficient

Figure6. A plot showing thelikelihood of conver gence asa function of the peak valuefor the sensitivity coefficient
for film thermal conductivity. Error freedataiscompared with data having normally distributed errorsimpressed.

One set of errors had a standard deviation of s=0.30°C and the other was s= 0.45°C. Thisissignificant in that, with
the parameter values used in this example, the peak temperature in the sample was lessthan 1°C. Therefore, the
impressed error values were very large with respect to the measurements.

With all non-linear parameter estimation, initial values for the unknown parameters must be provided as
input data to begin the non-linear regression process. If theinitial values are significantly different from those of the
true parameter values, convergenceis more difficult to obtain. Figure 6 shows a plot of the maximum value of the
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error intheinitial parameter val ues selected, which still allowed convergence for various values of peak sensitivity
coefficient for film thermal conductivity. Thisplot essentially gives a picture of the robustness of the parameter
estimation method, under different experimental conditions. Note that, if the peak sensitivity coefficient islessthan
0.1 degree, convergence could not be obtained even with error free data. Otherwise, asthe peak sensitivity
coefficient increased, convergence was still obtainable, even with initial parameter values that were off from the true
values by afactor of 10 in some cases. Although adding the impressed errorsto the data deteriorated the
performance of the parameter estimation method, afairly large error in theinitial parameter values could still bring
about convergence. However, the threshold for obtaining convergence was higher in terms of the peak value for the
film conductivity sensitivity coefficient.

IV. Analysisof Laboratory Data

A two-layer sample with a substrate of epoxy and afilm of carbon black was prepared at Michigan State
University and tested using the flash diffusivity instrument at the High Temperature Materials L aboratory at Oak
Ridge National Laboratory. The intention was to make the conductivity of the film lower than that of the substrate so
asto allow effective estimation of the film conductivity. Sincethefilmin this case was extremely thin at 15 microns,
the thermal conductivity had to be very low in order to produce an adequately large sensitivity coefficient for
estimation of the film thermal conductivity.

14
12 1

Thermal Conductivity

Sensitivity Coefficients (K)

Convection Coefficient

0 2 4 6 8 10 12 14 16
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Figure7. Thesensitivity coefficientsfor thelaboratory sample show correlation between each of thethree
parameter s, making convergence very difficult. Moreover, the parameter of interest, thermal conductivity, exhibits
the smallest magnitude of the three sensitivity coefficients.

Thethermal conductivity of the epoxy substrate in this experiment was measured at 0.14 W/mK and the
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volumetric heat capacity was 1,159,000 JnPK. The volumetric heat capacity of the carbon black was 1,440,000 JniK.
As stated in the introduction, these properties must be known in order to estimate the thermal conductivity of the
carbon black film. Very little data exists regarding the thermal conductivity of carbon black®. Moreover, the
conductivity can be highly variable, depending on the structure and porosity of the carbon black, sinceitisa
discontinuous agglomeration of sub-micron graphite particles. In particular, the samples were analyzed in avacuum
environment during the tests conducted using the Oak Ridge flash diffusivity instrument. This environment causes
the lowest possible thermal conductivity to be exhibited by a porous material. Asabasisof comparison from the
literature, avalue of 0.05 W/mK was found for thermal conductivity of charcoal dust®. At various degrees of vacuum,
powders such as pearlite exhibit thermal conductivities ranging from 0.03 to 0.0001 W/mK, with the lowest thermal
conductivity exhibited at the greatest value of vacuun.

The data from the experiment involving this two-layer sample, which was measured using the Oak Ridge
flash diffusivity instrument, was next analyzed using the computer program developed in thisresearch. The results
obtained showed avery low thermal conductivity in the carbon black film. Three tests were run on the same sample.
Thethinness of the film made the sensitivity coefficient for the thermal conductivity of thefilm very low. Figure7
shows the sensitivity coefficients for this experiment. Ascan be seen from this plot, the three sensitivity coefficients
arecorrelated. Moresignificantly, the sensitivity coefficient for the parameter of interest, thermal conductivity,
exhibits the smallest magnitude of the three parameters.

Indeed, convergence was difficult to obtain and the normal convergence criterion, requiring all parameter
estimates to change less than one percent between iterations, had to be relaxed to three percent in order to achieve
convergence. Even at this, convergence was only obtainable in two of the three experiments. The values obtained
for the thermal conductivity in these two experiments were 0.000783 and 0.000745 W/mK. The standard deviation of
the residualsin these cases was approximately 0.048 °C with a maximum temperature rise in the experiment of
approximately 13 °C. Thisresidual magnitude corresponds to approximately 0.37 percent of the maximum temperature
rise, which indicates that the model follows the measured data quite closely. With the extremely low thermal
conductivity found for carbon black, even though the film was very thin, the diffusion thicknessratio for this
experiment was approximately 0.011, which was at the low end of the acceptable window for the use of this method. If
the data had contained larger measurement errors, convergence would have been unlikely. This corresponds
unsurprisingly to the fact that the convergence criteria had to be relaxed from the normal one percent variationin all
parameters between iterations, to three percent variation between iterations.

V. Conclusions

A method was successfully developed to determine the thermal conductivity of afilm on a substrate of
known thermal conductivity using the flash diffusivity method. Sensitivity coefficients were used in order to
establish guidelines for the use of this method so as to maximize the sensitivity of the experiment to the thermal
conductivity of thefilm. A range of diffusion thickness ratios was found over which the method would produce
results by converging on asolution. Finally, an actual experimental sample was tested in aflash diffusivity
instrument and the method was successful in finding the thermal conductivity of the film, even though the conditions
of the experiment were at the outer limits of the method’ s capabilities.
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