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Abstract
This paper presents a method dedicated to thermal conductivity measurement of thin (a few
millimeters thickness) insulating and super-insulating materials. The method is based on the
measurement of the temperature at the center of a heating element inserted between two
samples, with the unheated surface of the samples maintained constant. A 3D model of the
heat transfer in the system has been established and simulated to determine the validity
conditions of a 1D model to represent the center temperature. This 1D model was then used to
realize a sensitivity analysis of the center temperature to the different parameters. The
conclusion is that the thermal conductivity may be estimated with a good precision for all
insulating materials from a simple steady state measurement and that the thermal capacity may
also be estimated from transient recording of the temperature with a precision increasing with
the value of the thermal capacity of the samples. It has then been shown that a device with two
samples of different thickness improves the precision of the estimation of the thermal capacity.
These conclusions are validated by an experimental study on polyethylene foam and PVC
samples leading to an estimation of their thermal properties very close to the values measured
by other classical methods (deviation < 5%).

Keywords: thermal conductivity, thermal capacity, hot plate, transient method, insulating
material

(Some figures in this article are in colour only in the electronic version)

Nomenclature

a thermal diffusivity (m2 s−1)
b sample and heat element half-width (m)
c specific heat (J kg−1 K−1)
Ct total thermal capacity (sample + heating element)

(J K−1)
d sample and heat element half-length (m)
e thickness (m)
N number of experimental points
S sample and heating element area (m2)
T sample temperature (◦C)
Ti initial temperature of the system (◦C)
�T temperature difference between the heating element

and the blocks (◦C)

φ0 heat flux density in the heating element (W m−2)
ϕ0 heat flux in the heating element (W)
� Laplace transform of the heat flux
λ thermal conductivity (W m−1 K−1)
ρ density (kg m−3)
σX standard deviation on the parameter X
θ Laplace transform of the temperature T

Subscripts

b isothermal blocks
c center
exp experimental
h heating element
mod model
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1. Introduction

The thermal conductivity of thin insulating and super-
insulating materials (materials with thermal conductivity lower
than air conductivity) is difficult to measure, particularly for
very low density materials. Many different methods are
available for thermal conductivity measurement of insulating
materials; the more frequently used and the latest published
are as follows.

• The guarded hot plate method [1–3]
• The hot wire method [4–7]
• The hot strip method [8, 9]
• The hot disk method [10–12], the tiny hot plate method

[13] and the three-layer device method [14].

These methods present the following disadvantages.

• The guarded hot plate method needs large samples (50 ×
50 cm2).

• The hot wire method enables the estimation of the thermal
conductivity from the slope of the curve T(t) = f [ln(t)]
assuming two hypotheses: the sample is semi-infinite and
the sensitivity of the temperature to the thermal capacity
of the probe is negligible. This last hypothesis is verified
only after a time that increases when the density of the
material decreases. Even if the use of a complete model
(taking into account the thermal capacity of the probe)
enables us to process the temperature recording from
the beginning, the validity of the first hypothesis (semi-
infinite medium) may impose large sample dimensions.
The conductivity estimation may be wrong if the sample
is not large and thick enough or if the estimation time is
too short [7].

• The hot strip and hot disk methods are based on a
model, and an estimation method quite complex and the
uncertainties in the probe dimensions may lead to an
uncertainty in the thermal conductivity estimation.

• The tiny hot plate and three-layer device methods are
based on the processing of mean temperatures that impose
taking into account the convective heat transfer on the
lateral faces of the sample. Moreover, in the case of
super-insulating materials, the conductive heat transfer in
the air surrounding the sample is not negligible compared
to the heat transfer inside the sample and must be taken
into account. The heat transfer in the air is quite difficult
to model since the boundary conditions in the air are not
well known.

• The hot wire, hot strip and hot disk methods cannot lead to
an estimation of the thermal conductivity in one direction
from a unique experience for an anisotropic material.

The aim of this work was to propose a method.

• Easy to use and suited to relatively small samples,
particularly to low thickness samples.

• Suited to low-conductivity measurement.
• Using an estimation method based on a simplified model

whose validity may be verified a posteriori by a more
complex model.

2. Materials and methods

The different elements that make up the experimental device
represented in figure 1 are as follows.

• A heating element made of a plane resistance inserted
between two insulating polymide films. Its thickness is
eh = 0.22 mm and a type K thermocouple (wire diameter
of 0.03 mm) is fixed at the center. The heating element
is inserted between two samples with a thickness e. The
heating element and the samples have the same cross-
section area S.

• Two isothermal aluminum blocks with a thickness 40 mm
and the same cross-section S as the samples.

• A tightening device enabling pressure control and the
measurement of the thickness of the device inserted
between the aluminum blocks.

A flux step is sent in the heating element and the
temperatures Tcexp(t) at the center of the heating element and
Tbexp(t) of the aluminum blocks are recorded. The processing
of the recording of Tcexp(t) and Tbexp(t) is realized by supposing
that the heat transfer at the center of the heating element is
1D. A 3D model will enable us to verify this hypothesis.
A simplified 1D model is then used to estimate the thermal
characteristics: a stationary model is sufficient to estimate
the thermal conductivity λ, and a transient model is used to
estimate the thermal capacity ρc.

The following hypotheses have been considered.

• The system is at a uniform temperature Ti (equal to the
ambient air temperature) at initial time.

• The sample is opaque.
• Thermal contact resistances and thermal resistance of the

heating element are negligible compared to the sample
thermal resistance.

3D model

The system will be first modeled with the hypothesis that the
thermal capacity of the aluminum blocks is large enough so that
the temperature Tbexp remains constant during the experiment
(cf figure 2). If T(x, y, z, t) is the temperature of the sample,
the heat transfer equation is

∂2T (x, y, z, t)

∂x2
+

∂2T (x, y, z, t)

∂y2
+

∂2T (x, y, t)

∂z2

= 1

a

∂T (x, y, z, t)

∂t
(1)

where a is the thermal diffusivity (m2 s−1) of the sample.
The initial condition is

T (x, y, z, 0) = Ti. (2)

The boundary conditions are

∂T (0, y, z, t)

∂x
= 0 (3)

∂T (x, 0, z, t)

∂y
= 0 (4)

− λ
∂T (b, y, z, t)

∂x
= h[T (b, y, z, t) − Ti] (5)
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Figure 1. Schema of the experimental device.
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Figure 2. Schema of the modeled system.

− λ
∂T (x, d, z, t)

∂y
= h[T (x, d, z, t) − Ti] (6)

T (x, y, e, t) = Ti. (7)

Since the thermal contact resistances and thermal resistance of
the heating element are supposed negligible, the temperature
of the heating element Th(x, y, t) is equal to T(x, y, 0, t) and

φ0

2
= 1

2
ρhehch

∂T (x, y, 0, t)

∂t
− λ

∂T (x, y, 0, t)

∂z
(8)

where λ is the sample thermal conductivity (W m−1 K−1); e,
2b and 2d are respectively the thickness, the width and the
length (m) of the samples; ρh, ch and eh are respectively
the density (kg m−3), the specific heat (J kg−1 K−1) and
the thickness (m) of the heating element; h is the convective
heat transfer coefficient (W m−2 K−1) and φ0 is the heat flux
density produced in the heating element (W m−2).

Setting

�T (x, y, z, t) = T (x, y, z, t) − Ti and

L[�T (x, y, z, t)] = θ(x, y, z, p), (9)

where L is the Laplace operator, the Laplace transform of
relation (1) leads to

∂2θ(x, y, z, p)

∂x2
+

∂2θ(x, y, z, p)

∂y2
+

∂2θ(x, y, z, p)

∂z2

= p

a
θ(x, y, p). (10)

Using the separation of variables method, the Laplace
transform of the temperature may be written as

θ(x, y, z, p) = X(x, p)Y (y, p)Z(z, p). (11)

The resolution of the system of equations (1) to (11) leads to

θ(x, y, z, p) =
∞∑

p=1

∞∑
q=1

×
�0(p)

2
sin(αpb)

αp

sin(δqd)

δq
cos(αpx) cos(δqy) sinh[γpq(e − z)]

Gpq

[
sin(2αpb)

4αp
+ b

2

] [
sin(2δqd)

4δq
+ d

2

]
(12)

where

Gpq = λγpq sinh(γpqe) +
ρhcheh

2
p cosh(γpqe). (13)

αn are the solutions of the equation αb tan(αb) = Hx , with

Hx = hb

λ
. (14)

δn are the solutions of the equation δd tan(δd) = Hy , with

Hy = hd

λ
. (15)

The values of γ are then given by

γ 2
pq = p

a
+ α2

p + δ2
q . (16)

�0(p) is the Laplace transform of the heat flux in the heating
element; in the case of a flux step its expression is

�0(p) = φ0

p
. (17)

One can deduce the expression of the Laplace transform of the
temperature at the center of the heated face of the sample:

θ(0, 0, 0, p) =
∞∑

p=1

∞∑
q=1

�0(p)

2
sin(αpb)

αp

sin(δqd)

δq
cosh(γpqe)

Gpq

[
sin(2αpb)

4αp
+ b

2

] [
sin(2δqd)

4δq
+ d

2

] .

(18)

1D model

A simplified model may be established by considering the
supplementary hypothesis that the heat transfer remains 1D
at the center of the system during the experiment. With this
hypothesis, the center temperature depends only on z and t and
will be denoted by Tc(z, t) and its Laplace transform will be
denoted by θc(z, p).

The temperature in the aluminum blocks is no longer
supposed time independent but is supposed uniform. This
last hypothesis is validated if the Biot number Bi = hb

λ
is

lower than 0.1. Considering h = 10 W m−2 K−1, thermal

3
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conductivity of the block λb = 200 W m−1 K−1 and sample
dimensions b = d = 100 mm lead to Bi = 0.005 so that the
temperature of the aluminum blocks may be considered as
uniform.

Since the thermal contact resistance has been neglected,
the temperature of the isothermal blocks Tb(t) is equal to
Tc(e, t).

Thus, the quadrupolar equation may be written [15] as[
θc(0, p)

�c(0, p)

]
=

[
1 0

Chp 1

] [
A B

C D

] [
θc(e, p)

�c(e, p)

]
(19)

where A= D = cosh
(√

p

a
e
); B = sinh

(√
p

a
e

)
λS

√
p

a

; C =
λS

√
p

a
sinh

(√
p

a
e
)
; S is the surface area of the sample

and of the heating element; Ch = 1
2ρhchehS where ρh, ch

and eh are respectively the density (kg m−3), the specific heat
(J kg−1 K−1) and the thickness (m) of the heating element.

Furthermore, the heat flux at the center of the unheated
face of the sample may be calculated as

ϕc(e, t) = Cb

dTc(e, t)

dt
+ hSbTc(e, t) (20)

where Cb = ρbcbebS with ρb, cb and eb respectively the
density (kg m−3), the specific heat (J kg−1 K−1) and the
thickness (m) of the isothermal blocks and Sb the total
exchange surface area between the ambient air and the
isothermal block.

Its Laplace transform is

�c(e, p) = (Cbp + hSb)θc(e, p). (21)

It may be deduced that[
θc(0, p)

�c(0, p)

]

=
[

A B

AChp + C BChp + D

] [
θc(e, p)

(Cbp + hSb)θc(e, p)

]

(22)

leading to

θc(0, p) = A + B(Cbp + hSb)

AChp + C + (BChp + D)(Cbp + hSb)
�c(0, p)

(23)

and

θc(e, p) = 1

AChp + C + (BChp + D)(Cbp + hSb)
�c(0, p).

(24)

Simplified 1D model

A simpler 1D model may also be written with the hypothesis
that the temperature of the isothermal blocks remains constant,
within this hypothesis one can write[

θc(0, p)

�c(0, p)

]
=

[
1 0

Chp 1

] [
A B

C D

] [
0

�c(e, p)

]
. (25)

This equation leads to

θc(0, p) = �c(0, p)
B

BChp + D
. (26)

Table 1. Characteristics of the materials considered in the
sensitivity analysis.

λ (W m−1 K−1) a (m2 s−1) ρc (J m−3 K−1)

PVC 0.184 1.21 × 10−7 1.52 × 106

Low-density 0.040 5.00 × 10−7 8.00 × 104

insulator

Super-insulator 0.015 1.30 × 10−7 1.15 × 105

For ‘long times’

Tc(0, t → ∞) = φ0
λ
e

. (27)

Actually, the temperature Tc(e, t) increases after a certain time
(corresponding to p → 0). Figure 3 represents Tc(0, t), Tc(e, t)
and �Tc(t) = Tc(0, t)−Tc(e, t) calculated with relations (23)
and (24) and Tc(0, t) calculated with relation (26). Calculations
have been realized for two different insulating materials whose
properties are given in table 1, considering aluminum blocks
with a thickness eb = 40 mm and a convection heat transfer
coefficient h = 10 W m−2 K−2. Figure 3 shows that
the difference between the temperature Tc(0, t) calculated
with relation (26) and the temperature difference �Tc(t) is
negligible.

The principle of the method is thus to estimate the
values of the parameters λ and eventually ρc and ρhch

which minimize the sum of the quadratic errors � =∑N
i=1 [�Tcexp(ti) − Tc mod (ti)]

2 between the experimental curve
�Tcexp(t) = Tcexp(0, t) − Tcexp(e, t) and the theoretical curve
Tc mod (t) = Tc(0, t) calculated with relation (26) supposing
that the heat transfer remains 1D at the center of the heating
element. The validity of this hypothesis may be examined
a posteriori using the 3D model.

For the 3D model, a number of 50 terms is enough
to reach the convergence for the calculation of the Laplace
transform of the temperature at the center of the heating
element with relation (12). The roots of equations (14) and
(15) are calculated numerically. The inverse Laplace transform
is realized by use of the De Hoog algorithm [16].

The minimization of the sum ψ is realized by use of the
Levenberg–Marquardt algorithm.

Discussion of hypotheses

The thermal contact resistance between the sample and the
heating element and between the sample and the isothermal
block may be considered lower than 2 × 10−4 K W−1 m−2

[13].
The thermal resistance of the sample is e

λ
. Thus,

the thermal contact resistances may be neglected (less than
1% error) compared to the sample thermal resistance if

e

λ
> 0.02 K W−1m−2. (28)

The 3D model has then been used to estimate the limits of
validity of the 1D model considering an upper value h =
10 W m−2 K−1 for the convective lateral heat transfer
coefficient. For a given section area of the heating element, we
have calculated the sample thickness that leads to an error of

4
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Super-insulating material, λ = 0.015 W.m-1.K-1, ρc = 1.15x105 J.m-3, e = 6 mm 
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PVC, λ = 0.184 W.m-1.K-1, ρc = 1.52x106 J.m-3, e = 6 mm 
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Figure 3. Simulations of Tc(0, t) for a super-insulating material and for PVC.
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Figure 4. Limits of the sample thickness value to satisfy the
hypotheses of the simplified 1D model (square heating element with
side half-length b).

1% when estimating the thermal conductivity λ with relation
(27). The section of the heating element was supposed to be a
square with a side half-length b.

In figure 4 the following are represented (as a function of
the thermal conductivity of the sample).

• The minimum sample thickness required for satisfying
the hypothesis that the thermal contact resistance and

the heating element thermal resistance are negligible
compared to the sample thermal resistance.

• The maximum sample thickness required for satisfying
the hypothesis that the heat transfer remains 1D at the
center of the heating element. Calculations have been
realized for three different values of b.

Figure 4 enables us to define easily whether a couple of
values (e, λ) satisfy the hypothesis of the simplified 1D model.

3. Sensitivity analysis

The sensitivity analysis is based on the interpretation of the
reduced sensitivity of T(t) to X: X ∂T

∂X
(t) providing information

on the influence of the parameter X on the temperature T
according to Beck [17].

The sensitivity analysis has been realized for three opaque
insulating materials with a thickness e = 6 mm whose
properties are reported in table 1. We considered a heating
element with a thickness eh = 0.25 mm and a thermal capacity
ρhch = 1.5 × 106 J m−3 K−1. With the hypothesis that the
heat transfer is 1D at the center of the heating element,
the reduced sensitivities of the center temperature Tc(0, t) to
the different parameters have been calculated. All the results
are presented in figure 5.

One can see that

5
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Super-insulator, λ = 0.015 W.m-1.K-1, ρc = 1.15x105 J.m-3, e = 6 mm 

0 500 1000 1500
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0
Reduced sensitivities (°C)

t(s)

Sample conductivity

Sample capacity

Heater capacity

Low density insulator, λ = 0.04 W.m-1.K-1, ρc = 8.0x104 J.m-3, e = 6 mm 
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Figure 5. Reduced sensitivities of Tc(0, t) for three insulating
materials.

• the sensitivity to the thermal conductivity is high and
uncorrelated to the other sensitivities,

• the sensitivity to ρc is rather proportional to the value of
ρc and

• the sensitivities to ρhch and to ρc are uncorrelated
only for short times and will be difficult to estimate
separately especially for low-density materials for which
the sensitivity to ρhch is superior to the sensitivity to ρc.

To decorrelate the sensitivities to ρhch and ρc, we imagine
an experiment with two samples of the same material having
two different thicknesses. In this case, relation (26) is modified
as follows:

θc(0, p) = �c(0, p)
B1

2B1Chp+D1
+ B2

D2

(29)

where B1 = sinh
(√

p

a
e

)
λ
√

p

a

; D1 = cosh
(√

p

a
e
); B2 =

sinh
(√

p

a
2e

)
λ
√

p

a

;D2 = cosh
(√

p

a
2e

)
.

As an example, figure 6 represents the ratio of the reduced
sensitivities to ρc and ρhch calculated with relations (27) and
(29) for the low-density insulating material whose properties
are given in table 1.

(a) With two samples of the same thickness e = 3 mm.
(b) With two samples of the same thickness e = 6 mm.
(c) With one sample of thickness e1 = 3 mm and the other

sample of thickness e2 = 6 mm.

It can be seen in figure 6 that the device with two samples
of different thicknesses leads to a better decorrelation of the
parameters ρhch and ρc than the device with two samples
having the same thickness. This asymmetric device must be
preferred when it is possible after having verified that the
temperature Tc(e, t) remains constant during the experiment
since it has been shown that the sensitivities to the parameters
ρhch and ρc are correlated in a symmetrical device and that
their separate estimation is not precise.

The use of the 3D model enables the verification of
the similarity between the temperatures at the center of the
heating element calculated with the 1D and the 3D models for
the materials and the experiment duration considered in this
analysis.

This sensitivity analysis predicts that the thermal
conductivity λ may be estimated precisely with this method
but that it will be difficult to estimate separately the thermal
capacities ρc of the sample and ρhch of the heating element
especially for low-density materials. These conclusions will
be confirmed by the experimental study.

4. Experimental results and discussion

Measurements have been realized using a heating element
MINCO HK 5489 made of a plane resistance inserted
between two insulating polymide films, with a heated surface
100 ± 1 mm × 100 ± 1 mm and a thickness 0.22 ± 0.01 mm.

The uncertainty in the heating element area is thus around
2%. One must add the uncertainty in the sample thickness
estimated to 1% and in the heat flux produced in the heating
element, estimated to 0.5%. The sum of these uncertainties
leads to a global uncertainty of 3.5% to which must be added
the estimation error due to the noise measurement on �T and
the errors due to the phenomena that have not been taken into
account in the model.

Measurements have been realized on four different sample
couples:

• E1: polyethylene foam (ρ = 40 kg m−3), two samples
with a thickness 3 mm

• E2: polyethylene foam, a sample with a thickness 3 mm
and a sample with a thickness 6 mm

• E3: polyethylene foam, two samples with a thickness
6 mm

• E4: PVC, two samples with a thickness 5.89 mm

The thermal conductivity and the thermal capacity of
the polyethylene foam measured with the three-layer method
are respectively λ = 0.042 W m−1 K−1 and ρc = 9.50 ×
104 J m−3 K−1. The thermal diffusivity of the PVC measured
by the flash method is a = 1.21 × 10−7 m2 s−1 and its thermal

6
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Figure 6. Ratio of the reduced sensitivities of Tc(0, t) to ρc and to ρhch calculated for different sample thicknesses of a low-density insulator.

Table 2. Estimation results.

Relation (26) or (29) Relation (27)

Test Nr Sample λ (W m−1 K−1) ρc (J m−3 K−1) ρhch (J m−3 K−1) Ct (J K−1) λ (W m−1 K−1)

1 E1: polyethylene foam 0.0411 0.603 × 105 1.295 × 106 3.87 0.0411
(e1 = e2 = 3 mm)

2 0.0406 0.829 × 105 1.183 × 106 4.43 0.0406
3 0.0406 1.152 × 105 0.980 × 106 5.16 0.0406
Mean 0.0408 0.861 × 105 1.153 × 106 4.49 0.0408
Standard deviation 0.71% 32.0% 13.9% 14.3% 0.71%

4 E2: polyethylene foam 0.0412 0.843 × 105 1.161 × 106 5.79 0.0412
(e1 = 3 mm; e2 = 6 mm)

5 0.0408 0.856 × 105 1.166 × 106 5.86 0.0408
6 0.0416 0.777 × 105 1.278 × 106 5.65 0.0416
Mean 0.0412 0.825 × 105 1.202 × 106 5.76 0.0412
Standard deviation 0.97% 5.1% 5.5% 0.93% 0.97%

7 E3: polyethylene foam 0.0402 0.871 × 105 1.201 × 106 7.38 0.0403
(e1 = e2 = 6 mm)

8 0.0401 0.868 × 105 1.187 × 106 7.34 0.0404
9 0.0399 0.761 × 105 1.292 × 106 6.81 0.0401
Mean 0.0401 0.833 × 105 1.227 × 106 7.14 0.0403
Standard deviation 0.39% 7.6% 4.6% 4.5% 0.41%

10 E4: PVC 0.176 1.515 × 106 0a 90.8 0.176
(e1 = e2 = 5.89 mm)

11 0.178 1.536 × 106 92.2 0.178
12 0.174 1.577 × 106 94.6 0.174
Mean 0.176 1.543 × 106 92.6 0.176
Standard deviation 1.14% 2.03% 2.03% 1.14%

a In case of PVC, a too low sensitivity to ρhch prevents the estimation of ρhch (fixed to null value).

conductivity measured by the tiny hot plate method is λ =
0.184 W m−1 K−1, and its thermal capacity is thus ρc =
1.52 × 106 J m−3 K−1.

Three measures have been realized for each sample
couples. The parameter values λ, ρc and ρhch have been
estimated by minimization of the sum of the quadratic errors
between the experimental curve �Tcexp(t) = Tcexp(0, t) −
Tcexp(e, t) and the theoretical curve Tc(0, t) calculated with
relation (26). Figure 7 represents an example of an
experimental curve and of the curve simulated with the
estimated parameters; the residues defined as the difference
between the experimental points and the model are also
represented in the same figure. Table 2 presents a review
of the experimental results.

• The estimated values of the thermal conductivity λ of the
two materials are in good agreement with those measured
with other methods (deviation less than 5%).

• In all cases, the value of the thermal conductivity
λ calculated with relation (26) in the semi-permanent
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Figure 7. Example of experimental and simulated curves Tc(0, t)
and estimation residues ×10 (—).

regime is the same as the value estimated (both with the
value of ρhch and ρc) from the transient regime.

• The reproducibility of the method is very good for the
estimation of λ with a standard deviation around 1%
between the results of the three measurements.
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• The thermal capacity ρc of the PVC measured by this
method is very close (deviation < 1%) to the value
estimated by the hot plate and the tiny hot plate methods.
The deviation of ρc for the polyethylene foam is greater
(around 13%).

• The estimations of ρc are more dispersed particularly
for the lower density samples and strongly correlated
to the values of ρhch. This is illustrated by the values
of ρc, ρhch and of the global thermal capacity Ct =
S(ehρhch + eρc) of the ensemble heating element + sample
presented in table 1. The dispersion of the values of the
global thermal capacity Ct is lower than the dispersion of
the values of ρc and ρhch. The value of ρhch could be
previously determined by a measurement realized with a
low-density material with a well-known thermal capacity
ρc. This value of ρhch may then be considered as data
leading to an estimation of only λ and ρc to reduce the
dispersion on the estimated values of ρc.

• When comparing in table 1, the results obtained with the
polyethylene foam for the measurements realized with
the samples E2 (two samples of different thickness: e1 =
3 mm and e2 = 6 mm) and E1 (two samples of the same
thickness: e = 3 mm), it can be noticed that the device
with two different thickness (E2) leads to lower standard
deviation on the estimated values of ρc and ρhch than the
symmetrical device: 32.0% and 13.9% for E1 compared
with 5.1% and 5.5% for E2. This result is in agreement
with the sensitivity analysis.

• The standard deviations obtained with the asymmetrical
device E2 are close to those obtained with the symmetrical
device E3 (two samples of the same thickness: e =
6 mm) for the values of ρhch: 5.5% and 4.6%, and lower
for the values of ρc: 5.1% and 7.6%. The standard
deviation of the estimated values of the global thermal
capacity Ct (including the heating element and the sample
thermal capacity) is clearly lower in the asymmetrical
device E2 than in the symmetrical device E3: 0.93%
and 4.5%. The conclusion is that if ρhch is known, the
value of ρc may be determined more precisely with the
asymmetrical device.

5. Conclusion

The centered hot plate method described in this paper
enables the estimation of the thermal conductivity of thin
insulating and super-insulating materials with quite a simple
device. The thermal conductivity may be estimated with good
precision using a simple relation established for a steady state
measurement: the deviation of the estimated values from the
values measured with other classical devices is less than 5%.
The measurement of a local temperature at the center of the
heating element avoids us using a hot guard or taking into
account the lateral convective losses.

The validity of the hypotheses enabling the use of this
simple relation may be verified a posteriori with the 3D model
that we have developed.

The processing of the temperature transient recording also
enables the estimation of the thermal capacity ρc of the tested

material. The precision of this estimation will be better if
the total thermal capacity ρce of the sample is high. In all
cases, this estimation will be better if an insulating material
with known thermal properties is used to estimate the effective
heating area S of the heating element and its thermal capacity
ρhch.

It has also been shown that an asymmetrical device with
two samples of different thickness leads to a better estimation
of the thermal capacity ρc of the sample especially if the
thermal capacity ρhch of the heating element is known.
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