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In the application of an ac calorimetric method to precise thermal diffusivity measurement of a thin material, one-dimensional
temperature wave propagation is required. In a relatively thick material, one-dimensional temperature wave propagation is de-
formed and in the strict sense, two-dimensional temperature wave propagation should be taken into account. In the present
paper, we propose the condition of the maximum thickness of a material required to measure thermal diffusivity within an
accuracy of:2% in the framework of one-dimensional temperature wave propagation, based upon the results obtained analyt-
ically for the two-dimensional temperature wave propagation.
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dimensional system. Yamaeeal.?) considered such a case in
which two-dimensional temperature wave propagation takes
An ac calorimetric method has been extensively applied fslace in a platelike sample. They analyzed the behavior of ac
thermal diffusivity measurement of a variety of thin materialsemperature waves in the cross section given in Fig. 1 based
from polymer to diamond-? In this method, chopped light upon the Fourier transform of the impulse response. Then,
is partly applied to the front or the rear surface of a santhey pointed out that, if a thermal diffusivity measurement is
ple and the irradiated part is moved along the surface (sperformed in the region of/(d/7) > 100, wherex is the axis
Fig. 1). When the thickness of a samptg,is thin enough, along the surface of a platelike sample with its origin at the
one-dimensional temperature wave propagation takes plaggge of the irradiated part, the expression for one-dimensional
along the surface. To measure ac temperature, a thermocag-temperature wave propagation can be applied to the anal-
ple with a diameter smaller than the thermal diffusion lengtsis of thermal diffusivity along thex-direction. However,
is attached to the front or the rear surface. The decay or thige above region should depend not onlyshut also onD.
phase shift of ac temperature is measured as a function\ak need a general condition for measuring thermal diffusiv-
the relative displacement at a position|i} > w. From the ity along thex-direction. As seen in eq. (2), by usingandD
measurement of the ac temperature we obtain the thermal dife can express characteristic lengttk, Which is called the

1. Introduction

fusivity. This method has the following merits. thermal diffusion length, in ac temperature wave propagation.
1. The attachment of a thermocouple does not affect thgherefore, it is reasonable to consider the condition for the
precision of the measurement at 4. magnitude okd to measure thermal diffusivity along the

2. The effect of heat loss, which is dominant in the meadirection in a platelike sample with thicknessin the present
surement of materials with low thermal diffusivity suchpaper, by solving the differential equation of heat conduction
as a polymer film, can be corrected analytic&i. in a two-dimensional system, such as a platelike sample, un-

3. The edge effects that occur at the boundary of materiader the boundary conditions given in Fig. 1, we will propose
with high thermal diffusivity, such as a diamond plate the required magnitude &id for measuring thermal diffusiv-
can be corrected analyticafy?) ity within an accuracy of-2%.

To carry out the measurement, there is a limitation on the

thickness of a platelike sample, since in the above method,

one-dimensional temperature wave propagation along the sur-

face of a sample is assumed. For the thickness of a sample y

d, the following condition is roughly required to attain one-

dimensional temperature wave propagafibn: %T _ OQcost

aT
kd « 1, 1 2 -0
(1) ay /
where both the temperature wave number and the temperatur: \ Yy

decay constant are given by the same quarkijtgs:® S >
k= [— @) / //% .

“Vap
. . -w 0] w X
In eq. (2),w is the angular frequency and is the thermal ar
diffusivity of a sample. u
When the t_hICkness of a sample, is too large, a tem- Fig. 1. A system for a platelike material. The thicknesd snd the mod-
perature gradient across a sample appears and then, we ai@ted heat is applied in the region fram= —w to w. The boundary
no longer able to regard the plate-like sample as a one-conditions are given in the illustration. For the unitsQdfsee text.

=0
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2. Theoretical Analyses 3. Results of Analyses
The heat conduction equation in a two-dimensional system In the numerical calculations, the important quantities are
is given by the thicknessd, the half-width of the irradiated patt, the
AT (X, v, 1) 2Ty, 1) 92T(X,y,1) thermal diffusivity D and the angul_ar frequeney. Fpr both
ot =D VG 2y (3) QandT, we need only these relative values, and in the anal-

yses we chose them arbitrarily. Furthermore, bbtland w
First, we will analyze the temperature distribution in the sysgre related through eq. (2). Then, we ukédstead ofD and

tem shown in Fig. 1. The boundary conditions are . As typical examples, we show the distributions of ac tem-
aT(x,y, 1) perature waves in the two-dimensional cross section in Fig. 1
Ty O ay=0 4 ford = 0.005m,w = 0.01m,k = 1m* andd = 0.005m,
ST(X. Y. 1) w = 0.01m,k = 10nT ! in Figs. 2 and 3, respectively. For
——==-=0, aty=dandin|x| > w, (5) these cases, the isothermal contours are drawn only to guide
dy the eyes so that the contours in both figures lie nearly with the
IT(X, Y, 1) same separation on the right side. As seen in Figs. 2 and 3,

ay Qcoswt, aty=dandinix| < w, (6) the contours on the right side are almost normal to the upper

whereQ is the applied heat flux divided by the thermal con@nd lower s_urfaces. Therefore ac temperatqre waves seem to
ductivity of a material. As can be seen from egs. (4) and (5ProPagate in a manner close to one-dimensional behavior. In
in the present analysis we assume that there is no heat leakH¥fefollowing we will consider these results in detail.

to the surroundings. To solve eq. (3), let us defii(g, vy, t) Based upon the result df(x, y, t) for d = 0.01m and
k = 1m!, we draw logR as a function ok aty = 0 and

as
_ y = d in Fig. 4 andy as a function ok aty = 0 andy = d
T(x,y,t) = Rel0(X, y) expliot)}. () in Fig. 5. From them, the derivative of I&ywith respect to
Then, we can rewrite eq. (3) as X
320(x,y)  920(X,Y) Kaanp— — C1O9R 16
2ik%0(x, y) = 2 ¥} (8) AP g (16)

X2 ay?
Let us define a Fourier transform and its inverse Fourier tran
form, respectively, by

divided byk is plotted in Figs. 6(a) and (b) fér= 1 m~tand
00 nr?, respectively, and the derivative of

6(s,y) = /OO 0(x, y) exp(—isxydx, (9)
]7_00 o y 4 Qcos wt
0(X,y) = Z/ 0(s, y) expisx)ds. (20)

Substituting eq. (10) into eq. (8), we can obtain

2j d :
3 93(52, y) _ £%0(s,y) =0, (11) 7
y :
where£? = s? + 2ik? and Ré is positive. We can solve the
differential equation of eq. (11) with the boundary conditions
of egs. (4)—(6) as :
0 w

iGs.y) = 2Q sinsw coshty (12)

) éjSSIﬂhéj.d Fig. 2. Isothermal contours in a two-dimensional cross section for the
As a result, from the inverse Fourier transform of eq. (12) model wherd = 0.005m,w = 0.01m anck = 1 m1.

using eq. (10) we obtaifi(x, y) as

>
X

sinsw coshéy
- T o s, 1 Y &
gssnhed > (1) Qcosat

Finally, since we wish to obtaif (x, vy, t), let us define the
following relation:

0(x, y) = R(x, y) explig (x, y)}. (14) d g
Then,T(x, y, t) is given by
T(X,y,t) = R(X, y) codwt + ¢ (X, y)}. (15) /
It should be stressed that as given in eq. (13), by integration
0

we can obtairf(x, y) without any approximation and finally
getT(x, vy, t). This is a useful result for considering explic-

itly the experimental conditions required for precise measurery. 3. Isothermal contours in a two-dimensional cross section for the
ment. model wherd = 0.005m,w = 0.01m anck = 10 nT L.

0(X,y) = g /Oo exp(isx)

w X
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Fig. 4. Relation for logR versusx aty = 0 andy = d, whend = 0.01 m,
w = 0.01m andk = 1m1. The slope becomes linear slightly above ; : : : (b)
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-0.84 ' ' ' ' Fig. 6. Ratio of the apparent decay constefdppandk as a function ok
0.00 0.01 0.0? 0.03 0. 04 0. 05 aty = 0 andy = d whend = 0.01 m andw = 0.01m. (a) fork = 1m™!

— 1
x () and (b) fork = 100 nT-.

Fig. 5. Relation forg versusx aty = 0 andy = d whend = 0.01m,
w = 0.01m andk = 1m2. The slope becomes linear slightly abovecurve,ka apdK versusx or k, apdk versusx, near the edge of
x=001m (= w) and itis equal t = 1m~". the heated region af = w in Figs. 6(a) and (b) and 7(a)
and (b) in the following.
First atx = 0, in all of the curvesy apdk andky apdk be-
come almost zero. This means that at the center of the heated
Ka,app= _%, (17) ‘region,x = 0, ac temperature waves propagate almost par-
9x allel to the y-direction. At the edge of the heated region,
divided byk in Figs. 7(a) and (b) fok = 1m~*and 100m?, X = w (andx = —w) peaks appear iRy apdk andky apgk
respectively. In Figs. 4 and 5, both the slogesppandk, app ~ When ac temperature is detected on the front surface while on
of logR versusx and¢ versusx, respectively, are linear, i.e., the other hand, gentle slopes appear on the rear surface. It
as seen in Figs. 6(a) and (b) and 7(a) and (b) batdk is much easier to understand the above behavior based upon
andk apdK, respectively, become close to unity in the regiothe curves in Figs. 4 and 5. If only one-dimensional tempera-
wherex > w (andx < —w) wherew = 0.01m. This in- ture wave propagation takes place, the slopes dRlegrsus
dicates that one-dimensional temperature wave propagati®@ndg versusk are constant in the region gf> w and bend
holds in the region ok > w (andx < —w). As seen from downward as< decreases in &< x < w.!) Then, the curve
the behavior oka apdk andky apgk in Figs. 6(a) and (b) and Of Kaapdk versusx or Ky apdk versusx in one-dimensional
Figs. 7(a) and (b), respectively, the deviation freiis signif- temperature propagation lie between the solid curve and the
icant atx = w, i.e., the apparent thermal diffusivity deviatesdotted curve both in Figs. 4 and 5. Owing to the interference
from the true thermal diffusivity markedly at= w. There- of ac temperature waves, the solid curve deviates upward and
fore, if the condition guarantees one-dimensional temperatuifee dotted curve deviates markedly downward. As a result,
wave propagation at = w, the one-dimensional temperaturethe characteristic behaviors of the curkgqp/k versusx or
wave propagation holds in the entire regionxof> w (and Kpapdk versusx, near the edge of the heated region take place.
X < —w). This means that, if we verify the conditions for Then, let us consider the experimental condition at the end
measuring thermal diffusivity within an accuracy#fi% at points of the irradiated region, i.ex,(y) = (w, d) and w, 0).
x = w (andx = —w), we can obtain thermal diffusivity with At the front surface ofX, y) = (w, d), generally we observe
much higher accuracy in the regionxf- w (andx < —w). that the apparent thermal diffusivity is larger than the true
Next, we will briefly discuss the particular behaviors of théhermal diffusivity, as can be seen in the behaviokof,dk
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Fig. 8. Relation ofkd versuskw whenkg ap/k = 1.01 (solid line) and
kp,apy’ k = 1.01 (dashed line) at the front surface. Generally the mea-
surement is performed at a sufficiently langeand thereforekd becomes

3.0 fro f e o o
: : : flat.

X (m)

Fig. 7. Ratio of the apparent wave numlbgrppandk as a function ok
aty = 0 andy = d whend = 0.01m andw = 0.01m. (a) fokk = 1m1
and (b) fork = 10071,

andk; apgk versusx in the region ofx > w of Figs. 6(a) and
6(b), and the apparent thermal diffusivity is largesk at w. Fig. 9. Relation okd versgskw whenka apy/ k = 0.99 (solid curve) and
Then, we wil search for the conditon under which the ap- fo2 05 Sssied e 1 e rerSuce Oeretaly e measure
parent thermal diffusivity is 2% larger than the true thermal

diffusivity at x = w numerically, i.e., this is the condition

for the thermal diffusivity measurement within an accuracy

of £2% at &, y) = (w, d). In Fig. 8, atkaapy k = 1.01 or than the true thermal diffusivity. In Fig. 9, &f apy’ k = 0.99
Kp,apy’ k = 1.01,kd is drawn as a function dfw by a single or kpapy/ kK = 0.99, kd is plotted as a function okw. At
curve, since bottk, apdk andk, apdk are expressed as func-largekw, kd is 0.55 forka opdk. If d becomes smaller, the
tions ofkd andkw which are derived from eq. (13). At large condition for one-dimensional temperature wave propagation
kw, kd is 0.31 forka apdk. If d becomes smaller, the condi- holds more sufficiently. Therefore, the condition that we can
tion for one-dimensional temperature wave propagation hol@détain the thermal diffusivity measurement within an accuracy
more strongly. Therefore, the condition that we can attain thaf 2% is given by
thermal diffusivity measurement within an accuracy of 2% is kd < 0.55 (20)
given by

kd < 0.31 (18) for the measurement at the rear surface kM’ k = 0.99,

- the same analysis can be made, then the condition in which
for the measurement at the front surface kfpy k = 1.01, we can attain the thermal difffusivity measurement within an
the same analysis can be made, then the condition und@curacy of 2%, is given by
W_h|c_h we can attain the_ th_ermal diffusivity measurement kd < 0.03. 1)
within an accuracy of 2% is given by

kd < 0.02 (19) 4. Discussion

On the other hand, at the rear surfacexgfy) = (w, 0)the  As shown above, the condition for the thickness of a sam-
apparent thermal diffusivity is smaller than the true thermaile required for thermal diffusivity measurement using an ac
diffusivity. Then, we will search for the severest conditiorcalorimetric method depends on whether the ac temperature
under which the apparent thermal diffusivity is 2% smallegetection is carried out at the rear or the front surface of a
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sample and also whether we use the amplitude or the phaseltd degree of anisotropy the scale of theand y-directions

the ac temperature. When thermal diffusivity measurements$fould be modified.

performed under the conditions that the ac temperature is de<Finally, it should be noted that the conditions for thermal
tected at the rear surface of a sample and the amplitude of #i&usivity measurement in an ac calorimetric method cannot
ac temperature is used for the analysis, as seen in eq. (20)batapplied to the condition for heat capacity measurement in
1 Hz the maximum thickness of the samples is calculated aan ac calorimetric method. This will be discussed in another
Omax = 3mm for aluminum Paper.
Omax= 1 mm for Al,O3 ceramics

dmax=0.1mm for polyethylene 1) I. Hatta, Y. Sasuga, R. Kato and A. Maesono: Rev. Sci. Insti&én.
) ) (1985) 1643.
If we use 0.01 Hz for the measurement, the maximum thick?) Y.-Q. Gu and I. Hatta: Jpn. J. Appl. Phy (1991) 1295.

ness becomes ten times as thick as the above values. The?e-Y.-Q. Gu, L.-X. Yuand |. Hatta: Intern. J. Thermoph{8.(1997) 525.

: : : +4) 1. Hatta, R. Kato and A. Maesono: Jpn. J. Appl. PI3&(1986) L493.
fore, the ac calorimetric method to measure thermal dlffusws) v-Q. GU, X.-W. Tang, Y. Xu and |. Hatta: Jpn. J. Appl. Ph2(1993)

ity can be applied not only to thin samples but also to rela-" | 1365,
tively thick samples, where the sample thickness is compara) Y.-Q. Gu and I. Hatta: Jpn. J. Appl. Phy3@ (1991) 1137.
ble to those required to use a laser flash method. 7) M. A.J. Angstrom: Philos. Ma@5(1863) 130.
The present results can be easily extended to a case &h gr'ess'scg;s;g;'g afgs‘é)%h‘;a:g@;ngia'on of Heat n Solid€larendon
which there is anisotropy in the thermal diffusivity in tke  g) T, Yarﬁane, s. Katayama and M. Todoki: Rev. Sci. Instr6f(1995)

and y-directions of a material. In such a case, according to 5305.



