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In the application of an ac calorimetric method to precise thermal diffusivity measurement of a thin material, one-dimensional
temperature wave propagation is required. In a relatively thick material, one-dimensional temperature wave propagation is de-
formed and in the strict sense, two-dimensional temperature wave propagation should be taken into account. In the present
paper, we propose the condition of the maximum thickness of a material required to measure thermal diffusivity within an
accuracy of±2% in the framework of one-dimensional temperature wave propagation, based upon the results obtained analyt-
ically for the two-dimensional temperature wave propagation.
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1. Introduction

An ac calorimetric method has been extensively applied to
thermal diffusivity measurement of a variety of thin materials
from polymer to diamond.1–3) In this method, chopped light
is partly applied to the front or the rear surface of a sam-
ple and the irradiated part is moved along the surface (see
Fig. 1). When the thickness of a sample,d, is thin enough,
one-dimensional temperature wave propagation takes place
along the surface. To measure ac temperature, a thermocou-
ple with a diameter smaller than the thermal diffusion length
is attached to the front or the rear surface. The decay or the
phase shift of ac temperature is measured as a function of
the relative displacement at a position in|x| ≥ w. From the
measurement of the ac temperature we obtain the thermal dif-
fusivity. This method has the following merits.

1. The attachment of a thermocouple does not affect the
precision of the measurement at all.4)

2. The effect of heat loss, which is dominant in the mea-
surement of materials with low thermal diffusivity such
as a polymer film, can be corrected analytically.2,5)

3. The edge effects that occur at the boundary of materials
with high thermal diffusivity, such as a diamond plate,
can be corrected analytically.3,6)

To carry out the measurement, there is a limitation on the
thickness of a platelike sample, since in the above method,
one-dimensional temperature wave propagation along the sur-
face of a sample is assumed. For the thickness of a sample,
d, the following condition is roughly required to attain one-
dimensional temperature wave propagation:1)

kd¿ 1, (1)

where both the temperature wave number and the temperature
decay constant are given by the same quantity,k, as7,8)

k =
√
ω

2D
. (2)

In eq. (2),ω is the angular frequency andD is the thermal
diffusivity of a sample.

When the thickness of a sample,d, is too large, a tem-
perature gradient across a sample appears and then, we are
no longer able to regard the plate-like sample as a one-

in a two-dimensional system, such as a platelike sample, un-
der the boundary conditions given in Fig. 1, we will propose
the required magnitude ofkd for measuring thermal diffusiv-
ity within an accuracy of±2%.

dimensional system. Yamaneet al.9) considered such a case in
which two-dimensional temperature wave propagation takes
place in a platelike sample. They analyzed the behavior of ac
temperature waves in the cross section given in Fig. 1 based
upon the Fourier transform of the impulse response. Then,
they pointed out that, if a thermal diffusivity measurement is
performed in the region ofx/(d/π) > 100, wherex is the axis
along the surface of a platelike sample with its origin at the
edge of the irradiated part, the expression for one-dimensional
ac temperature wave propagation can be applied to the anal-
ysis of thermal diffusivity along thex-direction. However,
the above region should depend not only onω but also onD.
We need a general condition for measuring thermal diffusiv-
ity along thex-direction. As seen in eq. (2), by usingω andD
we can express characteristic length, 1/k, which is called the
thermal diffusion length, in ac temperature wave propagation.
Therefore, it is reasonable to consider the condition for the
magnitude ofkd to measure thermal diffusivity along thex-
direction in a platelike sample with thicknessd. In the present
paper, by solving the differential equation of heat conduction

Fig. 1. A system for a platelike material. The thickness isd and the mod-
ulated heat is applied in the region fromx = −w to w. The boundary
conditions are given in the illustration. For the units ofQ, see text.



2. Theoretical Analyses

The heat conduction equation in a two-dimensional system
is given by

∂T(x, y, t)

∂t
= D

(
∂2T(x, y, t)

∂x2
+ ∂

2T(x, y, t)

∂y2

)
. (3)

First, we will analyze the temperature distribution in the sys-
tem shown in Fig. 1. The boundary conditions are

∂T(x, y, t)

∂y
= 0, at y = 0, (4)

∂T(x, y, t)

∂y
= 0, at y = d and in|x| > w, (5)

∂T(x, y, t)

∂y
= Q cosωt, at y = d and in|x| ≤ w, (6)

whereQ is the applied heat flux divided by the thermal con-
ductivity of a material. As can be seen from eqs. (4) and (5),
in the present analysis we assume that there is no heat leakage
to the surroundings. To solve eq. (3), let us defineT(x, y, t)
as

T(x, y, t) = Re{θ(x, y) exp(iωt)}. (7)

Then, we can rewrite eq. (3) as

2ik2θ(x, y) = ∂2θ(x, y)

∂x2
+ ∂

2θ(x, y)

∂y2
. (8)

Let us define a Fourier transform and its inverse Fourier trans-
form, respectively, by

θ̂ (s, y) =
∫ ∞
−∞

θ(x, y) exp(−isx)dx, (9)

θ(x, y) = 1

2π

∫ ∞
−∞

θ̂ (s, y) exp(isx)ds. (10)

Substituting eq. (10) into eq. (8), we can obtain

∂2θ̂ (s, y)

∂y2
− ξ2θ̂ (s, y) = 0, (11)

whereξ2 = s2 + 2 ik2 and Reξ is positive. We can solve the
differential equation of eq. (11) with the boundary conditions
of eqs. (4)–(6) as

θ̂ (s, y) = 2Q sinsw coshξy

ξssinhξd
. (12)

As a result, from the inverse Fourier transform of eq. (12)
using eq. (10) we obtainθ (x, y) as

θ(x, y) = Q

π

∫ ∞
−∞

exp(isx)
sinsw coshξy

ξssinhξd
ds. (13)

Finally, since we wish to obtainT(x, y, t), let us define the
following relation:

θ(x, y) = R(x, y) exp{iφ(x, y)}. (14)

Then,T(x, y, t) is given by

T(x, y, t) = R(x, y) cos{ωt + φ(x, y)}. (15)

It should be stressed that as given in eq. (13), by integration
we can obtainθ (x, y) without any approximation and finally
get T(x, y, t). This is a useful result for considering explic-
itly the experimental conditions required for precise measure-
ment.

3. Results of Analyses

In the numerical calculations, the important quantities are
the thicknessd, the half-width of the irradiated partw, the
thermal diffusivityD and the angular frequencyω. For both
Q andT , we need only these relative values, and in the anal-
yses we chose them arbitrarily. Furthermore, bothD andω
are related through eq. (2). Then, we usedk instead ofD and
ω. As typical examples, we show the distributions of ac tem-
perature waves in the two-dimensional cross section in Fig. 1
for d = 0.005 m,w = 0.01 m,k = 1 m−1 andd = 0.005 m,
w = 0.01 m,k = 10 m−1 in Figs. 2 and 3, respectively. For
these cases, the isothermal contours are drawn only to guide
the eyes so that the contours in both figures lie nearly with the
same separation on the right side. As seen in Figs. 2 and 3,
the contours on the right side are almost normal to the upper
and lower surfaces. Therefore ac temperature waves seem to
propagate in a manner close to one-dimensional behavior. In
the following we will consider these results in detail.

Based upon the result ofT(x, y, t) for d = 0.01 m and
k = 1 m−1, we draw logR as a function ofx at y = 0 and
y = d in Fig. 4 andφ as a function ofx at y = 0 andy = d
in Fig. 5. From them, the derivative of logR with respect to
x,

ka,app= −∂ log R

∂x
, (16)

divided byk is plotted in Figs. 6(a) and (b) fork = 1 m−1 and
100 m−1, respectively, and the derivative ofφ,

Fig. 2. Isothermal contours in a two-dimensional cross section for the
model whend = 0.005 m,w = 0.01 m andk = 1 m−1.

Fig. 3. Isothermal contours in a two-dimensional cross section for the
model whend = 0.005 m,w = 0.01 m andk = 10 m−1.
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ka,app= −∂φ
∂x
, (17)

divided byk in Figs. 7(a) and (b) fork = 1 m−1 and 100 m−1,
respectively. In Figs. 4 and 5, both the slopes,ka,appandkp,app,
of logR versusx andφ versusx, respectively, are linear, i.e.,
as seen in Figs. 6(a) and (b) and 7(a) and (b) bothka,app/k
andkp,app/k, respectively, become close to unity in the region
wherex > w (andx < −w) wherew = 0.01 m. This in-
dicates that one-dimensional temperature wave propagation
holds in the region ofx > w (andx < −w). As seen from
the behavior ofka,app/k andkp,app/k in Figs. 6(a) and (b) and
Figs. 7(a) and (b), respectively, the deviation fromk is signif-
icant atx = w, i.e., the apparent thermal diffusivity deviates
from the true thermal diffusivity markedly atx = w. There-
fore, if the condition guarantees one-dimensional temperature
wave propagation atx = w, the one-dimensional temperature
wave propagation holds in the entire region ofx ≥ w (and
x ≤ −w). This means that, if we verify the conditions for
measuring thermal diffusivity within an accuracy of±1% at
x = w (andx = −w), we can obtain thermal diffusivity with
much higher accuracy in the region ofx > w (andx < −w).
Next, we will briefly discuss the particular behaviors of the

curve,ka,app/k versusx or kp,app/k versusx, near the edge of
the heated region ofx = w in Figs. 6(a) and (b) and 7(a)
and (b) in the following.

First atx = 0, in all of the curveska,app/k andkp,app/k be-
come almost zero. This means that at the center of the heated
region,x = 0, ac temperature waves propagate almost par-
allel to the y-direction. At the edge of the heated region,
x = w (and x = −w) peaks appear inka,app/k andkp,app/k
when ac temperature is detected on the front surface while on
the other hand, gentle slopes appear on the rear surface. It
is much easier to understand the above behavior based upon
the curves in Figs. 4 and 5. If only one-dimensional tempera-
ture wave propagation takes place, the slopes of logR versus
x andφ versusx are constant in the region ofx ≥ w and bend
downward asx decreases in 0< x < w.1) Then, the curve
of ka,app/k versusx or kp,app/k versusx in one-dimensional
temperature propagation lie between the solid curve and the
dotted curve both in Figs. 4 and 5. Owing to the interference
of ac temperature waves, the solid curve deviates upward and
the dotted curve deviates markedly downward. As a result,
the characteristic behaviors of the curve,ka,app/k versusx or
kp,app/k versusx, near the edge of the heated region take place.

Then, let us consider the experimental condition at the end
points of the irradiated region, i.e., (x, y)= (w, d) and (w, 0).
At the front surface of (x, y) = (w, d), generally we observe
that the apparent thermal diffusivity is larger than the true
thermal diffusivity, as can be seen in the behavior ofka,app/k

Fig. 4. Relation for logR versusx at y = 0 andy = d, whend = 0.01 m,
w = 0.01 m andk = 1 m−1. The slope becomes linear slightly above
x = 0.01 m (= w) and it is equal tok = 1 m−1.

Fig. 5. Relation forφ versusx at y = 0 andy = d whend = 0.01 m,
w = 0.01 m andk = 1 m−1. The slope becomes linear slightly above
x = 0.01 m (= w) and it is equal tok = 1 m−1.

Fig. 6. Ratio of the apparent decay constantka,appandk as a function ofx
at y = 0 andy = d whend = 0.01 m andw = 0.01 m. (a) fork = 1 m−1

and (b) fork = 100 m−1.
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4. Discussion

As shown above, the condition for the thickness of a sam-
ple required for thermal diffusivity measurement using an ac
calorimetric method depends on whether the ac temperature
detection is carried out at the rear or the front surface of a

andkp,app/k versusx in the region ofx ≥ w of Figs. 6(a) and
6(b), and the apparent thermal diffusivity is largest atx = w.
Then, we will search for the condition under which the ap-
parent thermal diffusivity is 2% larger than the true thermal
diffusivity at x = w numerically, i.e., this is the condition
for the thermal diffusivity measurement within an accuracy
of ±2% at (x, y) = (w, d). In Fig. 8, atka,app/k = 1.01 or
kp,app/k = 1.01, kd is drawn as a function ofkw by a single
curve, since bothka,app/k andkp,app/k are expressed as func-
tions ofkd andkw which are derived from eq. (13). At large
kw, kd is 0.31 forka,app/k. If d becomes smaller, the condi-
tion for one-dimensional temperature wave propagation holds
more strongly. Therefore, the condition that we can attain the
thermal diffusivity measurement within an accuracy of 2% is
given by

kd ≤ 0.31 (18)

for the measurement at the front surface. Atkp,app/k = 1.01,
the same analysis can be made, then the condition under
which we can attain the thermal diffusivity measurement
within an accuracy of 2% is given by

kd ≤ 0.02. (19)

On the other hand, at the rear surface of (x, y) = (w, 0) the
apparent thermal diffusivity is smaller than the true thermal
diffusivity. Then, we will search for the severest condition
under which the apparent thermal diffusivity is 2% smaller

than the true thermal diffusivity. In Fig. 9, atka,app/k = 0.99
or kp,app/k = 0.99, kd is plotted as a function ofkw. At
largekw, kd is 0.55 forka,app/k. If d becomes smaller, the
condition for one-dimensional temperature wave propagation
holds more sufficiently. Therefore, the condition that we can
attain the thermal diffusivity measurement within an accuracy
of 2% is given by

kd ≤ 0.55 (20)

for the measurement at the rear surface. Atkp,app/k = 0.99,
the same analysis can be made, then the condition in which
we can attain the thermal difffusivity measurement within an
accuracy of 2%, is given by

kd ≤ 0.03. (21)

Fig. 7. Ratio of the apparent wave numberkp,app andk as a function ofx
at y = 0 andy = d whend = 0.01 m and,w = 0.01 m. (a) fork = 1 m−1

and (b) fork = 100 m−1.

Fig. 8. Relation ofkd versuskw whenka,app/k = 1.01 (solid line) and
kp,app/k = 1.01 (dashed line) at the front surface. Generally the mea-
surement is performed at a sufficiently largew and therefore,kd becomes
flat.

Fig. 9. Relation ofkd versuskw whenka,app/k = 0.99 (solid curve) and
kp,app/k = 0.99 (dashed line) at the rear surface. Generally the measure-
ment is performed at a sufficiently largew and therefore,kd becomes flat.
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sample and also whether we use the amplitude or the phase of
the ac temperature. When thermal diffusivity measurement is
performed under the conditions that the ac temperature is de-
tected at the rear surface of a sample and the amplitude of the
ac temperature is used for the analysis, as seen in eq. (20), at
1 Hz the maximum thickness of the samples is calculated as

dmax= 3 mm for aluminum,

dmax= 1 mm for Al2O3 ceramics,

dmax= 0.1 mm for polyethylene.

If we use 0.01 Hz for the measurement, the maximum thick-
ness becomes ten times as thick as the above values. There-
fore, the ac calorimetric method to measure thermal diffusiv-
ity can be applied not only to thin samples but also to rela-
tively thick samples, where the sample thickness is compara-
ble to those required to use a laser flash method.

The present results can be easily extended to a case in
which there is anisotropy in the thermal diffusivity in thex-
and y-directions of a material. In such a case, according to

the degree of anisotropy the scale of thex- and y-directions
should be modified.

Finally, it should be noted that the conditions for thermal
diffusivity measurement in an ac calorimetric method cannot
be applied to the condition for heat capacity measurement in
an ac calorimetric method. This will be discussed in another
paper.
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